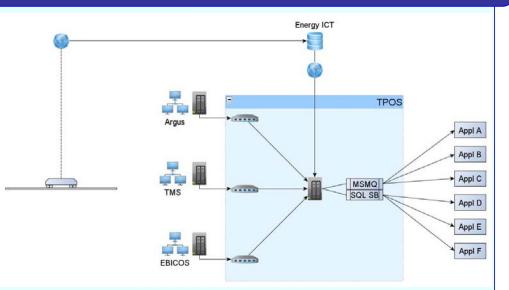


[Optimal Networks for Train Integration Management across Europe] Collaborative Project 7th Framework Programme

Contributions by Transrail Sweden AB

Dissemination seminar, Borlänge, 2014-10-16

Table of content


- Work in WP4
 - Monitoring of train traffic state (4.2)
 - Statistical prediction of train movements (4.2)
 - Optimal adjustment of scheduling times (4.5.3)
- Work in WP7
 - Integration with CATO & Transrail modules

transrail cato

- Data source: TPOS
 - Train events
 - GPS positions
- Evaluation
 - Delays, time stamps
- Data set collection
 - Three days in Nov 2012
 - Malmbanan
 - Daily train graphs + logs and films from STEG, CATO, TPOS
 - Shared with all partners
 - Used in subsequent work
- Report

Monitoring traffic state

Predicting train movements

Model

Training data

(2d)

Build

Test data

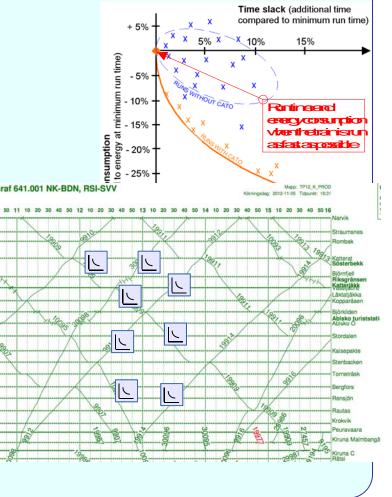
(1d)

- Short term
- Training phase
 - Historical data, filtering
 - Building model (DAG)
 - Categories
 - Signals / Travel times
- On-line prediction
 - Event triggered
- Evaluation
 - Kiruna Vassejaure
 - Error ~30 sec per 10 min (for stable characteristics)
- Report

Operator	# predictions	Error [s/km]	Error [s/min]
All	2030	4.24	5.05
MTAB	1046	3.85	3.80
Green Cargo	451	14.04	14.65
CargoNet	200	1.94	2.82
SJ	224	2.50	3.81
Other	109	12.08	13.56

Predict /Compare/Visualize/

FP7 - **ON-TIME** Collaborative Project



Adjusting scheduling times

- Use case
 - Dispatcher/other method decide _ ordering
 - Algorithm decide timing
 - Global: all trains
 - Efficient: Oper. Cost vs robustness
- Optimization model ٠
 - Variables: Scheduling times
 - Constraints: Schedule limits, separation, margins, ...
 - Objective: Oper. Cost (energy) & $\frac{1}{Min W^{T} + W^{C} - \sigma W^{R}}$

 $W^{R} = R^{C} \sum_{a} \omega_{a}^{k} m_{a}$

 $W^{T} = \sum_{e} \left(\omega_{e}^{T,min} t_{e}^{min} + \omega_{e}^{T,max} t_{e}^{max} \right)$ $W^{C} = \sum_{p} \sum_{x} \lambda_{xp} W_{xp}$

lustion
uation

	Trip durations	Operating cost	Margins (min)	Margin gain		
Original	1.00	1.00	Х	1.00		
Energy focus	1.12	0.91	X + 60	1.08		
Robustness focus	1.11	0.93	X + 66	1.15		
Normalised values						

- Malmbanan, 4h plan, mixed traffic
- Schematic cost function, 5-10 min adjustment
- Both energy and robustness improve vs published plan
- Small margin additions give large robustness gain
- Very quick solutions (< 1s)
- Report, including modelling details

Highlights

- Monitoring
 - Technical platform in place
- Prediction
 - Good short term accuracy
 - Does not require detailed data about track and trains
- Adjusting scheduling times
 - Let dispatcher focus on major decisions
 - Assure correctness (separation, runtime limits, ..)
 - Save energy & improve stability
- Continuation in other projects
 - Ongoing, but open for more!!